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ABSTRACT

This study examines the issues involved in bringing
qualitative and quantitative techniques to bear upon
unstructured managerial decisions. Furthermore, this work
reviews the problems of user interface and data base inter-
faces as they relate to aspects of model base management.

The focus of this study is to identify some organiza-
tions of knowledge abcut models within the Decision Suppcrt
System. In support of this goal, this report investigates
what knowledge is, how it is structured, and how it is

accessed.
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I. INTRODUCTION

This study examines the topic of Model Base Management
in Decision Support Systems (DSS). Model Management con-

cepts involve bringing appropriate quantitative and quali-

D N G N

tative techniques to bear upon structured, semistructured,
and unstructured managerial decisions. During the decision-
making session, the effective DSS should assist the user

(unfamiliar with computer science or management science)

S 4 A e - memA w..ararc s

in identifying, sequencing, and executing those models
appropriate to the problem instance. A myriad of issues [
arise concerning the human interface with this type of
system. These problems include speaking to the user in

P | terms not excessively technical, and linking the organiza-

tion's data base with the model base. The fields of manage-

ti4 . M. & M- wEmem M .. aTa

ment science, Artificial Intelligence (AI), computational

LY ¥ RN

linguistics, and psychology are involved in providing
... theoretical resolutions to some of these problems.

In particular, this work describes the issue of a ‘

a

'Y knowledge base in support of the DSS. 1Its intent is to |
identify some appropriate organizations on knowledge about

models. Insupport of this objective it is necessary to

. 3. .'.~‘ ‘. -“4-“'

examine general issues about human decisionmaking in organ- q
izational contexts. In addition, an investigation is made

about characteristics of the information in the knowledge )

base: how much there is, how it is structured, and how ?

"
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E} it can be accessed. Finally, this study will discuss areas
h
and implications for further research.

Several conceptual points provided the foundation upon

= which this work is built. First, Decision Support Systems

are differentiated from typical management information .
system applications by the nature of their task. The DSS 9
focuses on unstructured problems whose specifications are :
unclear or incomplete. Upper level strategic planners and
managers daily face problems with these characteristics.

DSS primarily are targeted to support these planners and

managers.

The traditional aspects of data retrieval and access
remain vital considerations in DSS. In the DSS, much of

the data manipulation and analysis is accomplished by

another segment of the software system called the "model
base". This aspect relieves the user from post-session,

manual data manipulation. This feature makes the DSS much

INIC Y RIPIIn

more flexible, adaptable, and friendly than the typical

Management Information System (MIS) or Data Based Manage-

.

ment System (DBMS) applications.

-

A DSS is flexible when it is able to address a wide
range of unstructured and underspecified problems. It is
adaptable when it can approach the problem resolution from
many directions to accomodate varying problemsolving
styles. It is, therefore, the entire objective of the DSS
to improve the performance and productivity of people that

rely on information to make decisions.

10
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The work presented here is structured as follows.
Chapter II is a survey of the classic and recent literature
addressing the salient issues of the DSS field. Chapter

III attempts to outline the prominent views of exactly what

P P Ut

constitutes a DSS. Chapter IV surveys the representational

techniques from the field of AI which shows promise for the

DSS field. Chapter V is a description of an actual imple-

PO R

mentation of a knowledge base about models, and some English-

like commands that facilitate its use. Chapter VI summarizes 3

the results and conclusions that can be drawn from this work.
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II. THE NATURE OF THE DECISION PROCESS

The study of computer-aided decisionmaking, and in
particular DSS, requires a review of theory regarding the
nature of human decision processes. This review is impor- \
tant for two reasons: (1) it aids in designing a DSS
compatible with human beings, and (2), it establishes a
frame of reference for the presentation of this study.

This section discusses the decision process and the decision-

maker, including cognitive styles, organizational frameworks,

7 b I o I S i el JORM CL AL AASTA NS o N
R ST AN AR Y
= a

procedures and theories regarding human information process-

]
!

ing, and decision structures.

A. COGNITIVE STYLES

The manner in which humans perceive and arrive at a
frame of reference, or a problem solution, has been the
subject of much psychological research. It has been
claimed that an inhibiting factor in the application of
quantitative methods to problems is the fact that managers
and management scientists think differently [Ref. 1].

McKenney and Keen (Ref. 2] present four styles of human

cognition. Cognitive style refers to the method by which

humans organize the information they perceive. This style
is, in part, habitual, but is developed through training and
E; experience. The authors define these styles as perceptive,

4 I receptive, intuitive, and systemic. Preceptive thinkers

12
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are those that focus on relationships be reen data. Pre- B
ceptive people look for how things differ and conform. ;
These similarities and differences cue conclusions about E
which data to gather, and which decisions to make. Recep- E
tive thinkers focus on details of a situation rather than :
overviews. Receptive thinkers take a bottom-up approach .
to constructing the problem instance. The perceptive thinker ﬁ
will take an overview, or top-down, approach to problem a
formulation. Therefore, the receptive thinker's conclu- )
sions are drawn from analysis rather than precepts. Sys- ]

-d

temic thinkers tend to structure their problem instance to
a solution algorithm; that is, they look at the problem in
terms of how it fits into an existing model solution. On
the other hand, intuitive thinkers are sensitive to clues
that may not be verbalized or overt. Intuitive thinkers.
include and discard information in a trial-and-error fashion.
The above models for cognitive styes are somewhat
supported by other researchers. Edward deBono [Ref. 3]
discusses the concept of vertical and lateral thinking.
Vertical thinking is loosely related to systemic thinking,
where one idea establishes a logical foundation upon which
to construct the next idea. Solution of a calculus problem
exemplifies this style, as one rule is applied to reach a
state upon which another rule is applied, until the solu-
tion is reached. Lateral thinking attempts to escape from

this regimen. Lateral thinkers seek out information from

13
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perceived circumstances. Lateral thinking is somewhat
associated with creative thinking, and the idea of pattern
matching from one circumstance to another.

Mintzberg IRef. 4] has related these concepts to the
critical human activities of planning and managing. He
asserts the process of managing is a logical and analytical
endeavor which seeks out the structure and reason in a
scenario. However, he believes management is a highly
intuitive and creative process. The manager, for example,
is more sensitive to unspoken signals, gestures, and under-
lying trends in the scenario. Due to the dynamics and
randomness of organizational settings, "hunches" and
"holistic perceptions" play inportant rolas. Managers must
deal with such intangibles as morale, whereas planners deal
with forecasted numbers.

It is apparent that any automated decision aid is likely
to have both systemic and intuitive users. A system which
pathologically attempts to structure the way a decision is
made is likely to invoke frustration and contempt, thereby
defeating whatever good characteristics are endemic to the

DSsS.

B. ORGANIZATIONAL FRAMEWORKS FOR ANALYSIS
With this characterization of the nature of individual

thought as a background, this section will attempt to place

the individual inside the organizational setting. At this
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juncture we are broadening the scope of the DSS, reaching
beyond individual coynition to organizational functioning.
There is, in effect, an interactive and dynamic association
between human decisionmakers and the organizational structure.

Researchers have identified several dimensions to the
phenomenon of organizational decisionmaking. Roland [Ref.
5] speaks of the group, the environment, the task, the
situaticn, the individual, and the available technology
as having impacts on how information is gathered and used.

Huber [Ref. 6] discusses four organizational decision
models and calls them the decision environment. These are
the rational model, the political model, the garbage can
model, and the program model. Huber defines the rational
model as an environment where organizational units use
information in an intentionally rational manner tc make
decisions for the organization. The volitical model depicts
an environment where organizational decisions are conse-
quences of the application of strategy and tactics by persons
or units seeking to influence decision processes in favor of
themselves.

The garbage can model is somewhat more abstract. 1In
this theory, a "can" is a choice situation, or an opportu-
nity to resolve a problem. To have a can, people must
perceive a problem. The garbage can model discusses a
decision as the consequence of problems looking for solu-

tions, solutions looking for problems, and opportunities

15
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for making decisions. The program model sees two reasons
for organizational decisions being what they are: (1)
decisions are constrained by standard operating procedures;
and (2), programming, training, and experience reinforce
past decision processes which, in turn, affect future
decisions (history constrains choice).

Huber goes on to say that certain types of information
are required for each model. The rational model, for
example, looks at several types of data in great detail in
an effort to project the logical decision. The political
model, however, lcoks less at data, and more at the pecople
involved in the situation, and how they can be influenced.
The important question in the garbage can model is "what
are the problems and opportunities that are present in the
organization”?

The program model infers that the organization can be
understood best by looking at several key elements of in-
formation. The first element is historical trend; trends
from the past can be projected into the future. Another
element of importance is the experience of the organiza-
tion; experience creates a pattern of behavior and policy.
Standard operating procedures also are important elements
in discovering the organizational priorities and concerns.

The reader may notice a certain parallel between organ-
izational models and cognitive styles. A systemic and

receptive person may find it easier if the work environment

16
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f' follows the rational model. On the other hand, intuitive
-
i and perceptive thinkers may experience greater success in -
L )
- a garbage can business. -
- )
&f Most organizations exhibit characteristics of all of .
h these models. A comprehensive DSS will accommodate the ...
& breadth of models and cognitive styles presented here. K
2 -
g C. TYPES AND STRUCTURES OF DECISIONS i
L]

p DSS typically are touted as supporting unstructured !
f decisionmaking. The literature, however, is somewhat vague
2 in defining exactly the differences between structured and

unstructured decisions, and which problem instances are »

structured and which are not. Some authors contend that
if an algorithm can be placed upon the parameters, then

it is a structured decision. Others contend that unstruc-
tured decisions can be transformed into structured ones
[Ref. 7].

Stabell [Ref. 8] discusses three dimensions to the
structure of a decision. The first dimension relates
structure to alternatives. The degree of structure is
determined by the ease with which alternative solutions

can be identified, i.e., the easier it is to generate

soluticns, the greater the structure. Consider, for example,
an office building with hundreds of employees, and a very
overworked elevator system providing access to its 50

floors of office space. Employees are late for work, late

going to lunch, and late returning. This adversely affects

17
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morale and productivity.
building will not allow
elevators, and the lift
what are the tenants to
where structured models

optimize lift capacity.

Given that the structure of the
for the addition of any more

capacity already is optimized,

do? This is an example of a problem

have contributed all they can to

It is quite difficult to generate

CaNm aadl aem g M Al Adn Aai g b 2 o Ty T
N A L T, R
. . P . I ]
e . . R PR I T

solution paths through this problem, and is, therefore,

unstructured according to the parameter of alternatives.

Let us look at this problem from another of Stabell's

dimensions, task predictability. In an unstructured task

4

vy

!
R SRR
AL !

¥

it is difficult to predict the consequences of the decision

to be made. It may be difficult to trace through the chain

Caa

of events that are apt to occur. The more unstructured the

task, the greater the number of variables relevant to the

el

task solution. In our example, we might consider staggering
work hours and lunch hours, or perhaps add escalators in

the stairwells (if possible), but can we predict with any

WP J.L' ‘o)

degree of certainty the relative impact of these decisions?
This leads to Stabell's final dimension--that of

epistemic uncertainty: that is, which variables are

o

important and relevant to the task solution? This is,

perhaps, the most difficult question to answer. Returning

to our example, which is in fact an actual case, consider

(RN §

the subsequent solution which illustrates the difficulty
in predicting important variables. The overriding diffi-

culty with the elevator overload was the impatience of

18
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.?; those waiting to get to his or her destination. When the
ﬁu owner put mirrors on the walls around the elevators, com-
- plaints dropped off drastically. Evidently people now

were occupied by watching themselves and others while

waiting for the elevators.

Structured decisions give clear clues as to which
variables and solution algorithms are needed. These might
include certain short term forecasting functions, and
linear optimization problems which are deterministic in
nature. Unstructured tasks include mergers, portfolio
management, and new product development--each of which have
complex variable interactions. Of course, semistructured
tasks share aspects from both ends of the spectrum. Pro-
duction scheduling, for example, involves some structured
aspects for optimizing production, and some unstructured
aspects such as inventory ramifications and input avail-

ability.

The preceding discussion is designed to illustrate the

PP

dimensions of structure to a decision or problem instance.

Gorry and Scott Morton [Ref. 9] point out the functional

7 W TSP

contexts, or types of decisions, which were implied earlier:

operational control, management control, and strategic

DRSO

planning decisions. Each of these can vary with regard
to structure, organizational framework, and individual style.
Independent of cognitive style is the theory of human

information processing. The next section provides a short

19
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discussion on the classical theory of how humans retrieve

and store information they process.

D. HUMAN INFORMATION PROCESSING

Newell and Simon [Ref. 10] provide the classical theory
of human information processing. Most theories of human
information processing include several steps: gathering
information, problem identification, generating alternatives,
prioritizing solutions, evaluating alternatives, implement-
ing actions, and evaluating feedback. This is the well-
known intelligence, design and choice, which Newell and
Simon describe as a serial process which makes use of small
short term memories, and large long term memories--both of
which have varying "read” and "write" times. As a result,
the authors contend that the problem solving process is
somewhat related to a heuristic search algorithm in AI.
Specifically, the problem solver has some goal in mind,
and a current condition. By comparing them, one can
generate steps that help move from the current state
toward the goal. Take, for example, Rubik's Cube. A
certain number of moves lead toward the ultimate solution,
and the problem solver assesses the current condition of
the cube, with the goal being solid colors on all six
sides. This is sometimes called means-ends analysis.

An important contribution of this theory is the
characterization of the memories involved (the processor

is discussed under cognitive styles). Short term memory

20
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can be written to quickly, but cannot retain much informa-
tion (five to seven elements). A phone number is a good
example. After looking it up, one must repeat it several
times on the way to the phone. Writing to long term memory
requires a longer memorization process, but once accomplished,

it stays in memory a long while.

E. SUMMARY

Four dimensions of the decision process have been dis-
cussed: cognitive style, organizational frameworks, the
structure of decisions, and the manner in which humans
process information (Figure 2.1). Each of these dimensions
in the decision process are important when considering
design of the DSS. A system which has strengths in one
area may nct be used due to weaknesses in another. Take,
for example, MYCIN [Ref. 1ll]: most experts agree that
this system diagnoses infections very well, but it is
used very little. This is due, in part, to the importance
of making a correct diagnosis when choosing a course of
action. Can . it be that the organizational framework is
inappropriate for such a system? Perhaps expert systems
are best suited for places, and organizations where experts
are not available.

Figure 2.1 summarizes some of the elements important in
the design and implementation of DSS. These elements are
cornerstones of success for the DSS. Although somewhat

intangible and nonquantifiable, these elements must be
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Figure 2.1: Important Elements in the Decision Process.
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considered in the physical implementation described in

the next section.
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IIT. DEFINITION OF THE DECISION SUPPORT SYSTEM

The term Decision Support System (DSS) has been used to

e A

refer to a wide range of decision assisting tools. The list
- may include a manager flipping a coin; an executive work

i station where one can speak in a natural language to a
battery of display devices; or a system with the ability to
[:- dynamically formulate, resolve, and present several illus-

- trations of a problem solution (numerical versus graphical

Py
RO

output). The only fundamental consensus that runs through
he field of DSS is that they should assist humans in making

decisions.

A. TYPICAL DECISION SUPPORT SYSTEM PARADIGMS

There are two important paradigms within the body of
literature on DSS. Each has an important framework, yet
each illustrates a distinct difference. Sprague and Carlson
[Ref. 12] present a very comprehensive paradigm which is
presented in Figure 3.1. These authors define the DSS as
an interactive computer-based system that helps decision-
makers utilize data and models to solve unstructured problems.
They see a DSS as three subsystems:

(1) A Dialog Management System (DGMS),

{(2) A Model Base Management System {(MBMS), and,
(3) A Data Base Management System (DBMS). X
They further divide these subsystems into various

components. The Dialog Management System, for example,
24
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includes a display or presentation language, such as the
graphics that the user sees. The DGMS also includes the
input language or facilities (trackball, mouse, light-
pen). An important feature of the DGMS is the knowledge
base, or what the user needs to know to communicate with
the system.

The Model Base Management System provides model manage-
ment capabilities by integrating a wide range of quantita-
tive techniques for all levels of management. Further,
the MBMS must provide for:

(1) The creation of new models;

(2) the access to existing models;

(3) the integration of existing models;

(4) the modification of specific model blocks;
(5) the modification of multi-module models;
(6) the cataloging of the model base; and,

(7) the linking of the models to the data base.

The DSS demands full DBMS capabilities. Data extraction
must be rapid and flexible enough to respond to unantici-
pated user requests. Other important features include the
ability to elicit data from a variety of sources, and the
ability to add or remove data sources. The DBMS also
should handle unofficial data from experimental sources,
as well as having the ability to portray data structures
in understandable form to the user, such as a relational

data structure.

26

“d
~d
~

I

-_‘.,..|".

.

okttt b

P - 4

. . - T .} -
- SRR - SR ARINDT

et



Dl A e, A et S it e Bite Eiadd iintn Shait il i i AN Bt it A an i aeih R S St Jntm MSEL ERGhe Bee Shelnthan diiesShaie-1 i e AT e Sk ‘BRSPS o
. - Pl IR Lo LS T T . PR L A S - . P CHRaran

In the above discussion there is no mention of how the
system is invoked to solve the user's specific problem. It
is in the implementation that conceptual d.ffcrences are
most readily observed. Spraque and Carlson rely on an
evolutionary development of a DSS. Each increment is
designed and built to satisfy a specific user problem
instance, or group of instances (i.e., a financial analysis
package). In practice, the manager communicates his
specifications to an implementor, who determines with the
aid of a toolsmith and a builder which models and other
packages the specific DSS calls for.

Implicit in this scheme of implementation are the
following assumptions:

(1) the manager is aware of the exact problem;

(2) the intermediaries (builders and toolsmiths) are
aware of the solution techniques for the problem; and

(3) the problem .l aracteristics are static enough to be
predicted prior to design and development.

Problems with these characteristics are likely to be
somewhat structured. This may contradict the definition
that the DSS is for unstructured decisionmaking (for
Sprague and Carlson's implementation procedure). Figure
3.2 illustrates the authors' implementation method.

A second paradigm for DSS is discussed in Bonczek,
et. al [Ref. 13], who view the DSS as consisting of three
subsystems. These elements are a Language Subsystem (LS),

Knowledge Subsystem (KS), and a Problem Processing Subsystem

(PPS), 27
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The LS is meant to encompass the total of all linguistic
facilities (retrieval and computational languages). This
perspective appears to eliminate vehicles other than a
language from the LS. An important aspect of the LS is
that it can be designed so that the user is unaware of
whether he is directing a data retrieval or model construc-
tion process.

The authors remark that unless the DSS contains knowledge
about the decisionmaker's problem domain the system will be
of little practical value. Therefore, the KS contains facts
that the user need not retain. This concept echoes Sprague
and Carlson's knowledge base, but differs significantly in
prominence within the paradigm. It prescribes that the
knowledge base be an important part of the DSS.

The PPS is a mechanism which relates input from the
language system to facts and hueristics about the problem
domain. It is through the PPS that problems are recognized,
models formulated, and data retrieved. The authors relate
this aspect of the automated system to human decision-
making. In essence, their perception of DSS emulates the
human process of problem solving, that is, the problem
must be verbalized in a manner understandable to the problem
solver whose special knowledge is brought to bear on the
problem soclution.

This concept varies considerably in implementation from

the Sprague and Carlson model. It does not assume that the

29
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decisionmaker has extensive knowledge about the problem and
future environments, and it does not insert human communi-
cation between the user and the builder or generator. As

a result, it appears to be a more flexible paradigm.

This study includes paradigms to define and construct
the DSS presented as in Figure 3.3. The DSS can be char-
acterized as having multiple and easy-to-use input languages,
a knowledge base that responds to these inputs to ask the
user for further clarifications to identify problems, a
readily accessible data base, a model base, and a problem
processor that takes information from the knowledge base
to construct models and to link with data to provide a
system response.

In implementation, the knowledge base will hold infor-
mation regarding problem instances and model applications
to these instances (the problem this study addresses), so
that there is no requirement that a decisionmaker foresee
circumstances. This helps to make a DSS a more generalized
tool.

Although it is not the intent of this study to address
matters of implementation, they are important in helping
to clarify the nature of their usage and, therefore, their
definition. Sprague and Carlson's evolutionary approach
appears to be to develop one specific DSS at a time, but
not with a preconceived solution template in mind, as the

knowledge base rests with the user. The foundation upon

30
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which this thesis is built calls for an evolutionary
approach that facilitates a variety of solutions. The
tradeoff between a specific problem and a general (generic)
solution algorithm is thus established. This introduces the

importance of Artificial Intelligence to the world of DSS.

B. KNOWLEDGED-BASED SYSTEMS

This section deals with the concept of knowledge-based
systems. These systems are introduced here to distinguish
them from DSS, as well as to lay the foundation for the
following section on model base management.

In Artificial Intelligence, the terms of "knowledge-
based systems" and "expert systems" are analogous. They
are terms that define a computerized expert in a specific
application. Such applications are widely varied, ranging
from medical diagnosis to teaching aids. What each system
has in common is a pool of expert knowledge to which it
refers to make sound decisions.

Winston [Ref. 14] describes two important points about
expert systems. The first point deals with the construction
of the expert system. This includes the idea of a state,
or some assessment, of the current circumstances. There
also exist control variables, or transformation operators,
which take as input the current state, apply some operation,
and provide as output some resulting state. The concepts of

iteration and recursion play important roles, as do division
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of problems into subproblems, and repeated application of
the transformation operators, known as recursion.

The second idea of importance contributed to DSS from
expert problem solving is the question of which knowledge
is important to the system. Winston calls this topic know-
ledge engineering, which includes the following questions:
What kind of knowledge is important? Is this knowledge
specialized? What are the most important ideas? How
should this knowledge be represented? How much knowledge
should be represented? Does a handful of facts cover 99
percent of the likely circumstances? Does comprehensive
knowledge require extraordinary programming effort? And
finally, exactly what information is required? For example,
if the system is designed to perform calculus functions,
then rules for integration and differentiation are required.
In a natural language understanding system, knowledge about
semantics as well as syntax is important. In other words,
having the appropriate structure is not enough--the meaning
of the elements play a vital role.

As Winston states:

Like compiled computer programs, memorized for-
mulas give little opportunity for assessing the
sources (of the knowledge) with the natural result
being poor response to even slightly unexpected
changes. . . . formulas are essences irreversibly
distilled, general techniques for summary and speed.

A DSS can be seen as an expert problem solver dealing

with problems that arise in a strategic environment.

However, a DSS must be a more comprehensive knowledge-~based
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system to respond to the unexpected changes to which Winston
refers. Expert problem solvers typically deal with one
specific domain. MYCIN [Ref. 1l1l], for example, deals solely
with diagnosis of infections. A DSS, on the other hand,

must be prepared to span several problem domains (e.qg.,
financial, marketing, production, and personnel).

Some aspects of DSS are especially compatible with the
techniques of expert systems, particularly model base
management. AI techniques add an extra dimension of flex-
ibility to the DSS. Through innovative procedures they can
at least attempt to match situations and circumstances to
existing data structures and processes. This is reminiscent
of the chess playing algorithm. On occasion, when the human
has stumped the program, an interesting phenomenon occurs--
the system persists in making the best possible move. This
is the type of response that must occur at all levels of
the DSS. This is an effort to maximize the application of
the DSS. AI techniques of pattern matching, heuristic
search, and natural language understanding--all contribute
significantly to the design of DSS. The following section
looks in detail at model base management, an area of DSS 1

which may be significantly enhanced by AI techniques.

C. ELEMENTS OF MODEL BASE MANAGEMENT
The focus of this study is on elements of the DSS that ]

involve model base management. There appears to be some

4 2 asmm e s o
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consensus as to what MBMS objectives are; however, techniques
for accomplishing these functions differ.
Bonczek, et. al. [Ref. 15] lists five points for the
design of model support in DSS:
(1) models should support a variety of functional areas;
(2) models should be able to stand alone, or in a job
stream with other models;
(3) model bases should have the ability to extract data
from the DBMS;
(4) model bases should have a command language for easy

interface; and,

(5) model bases should evolve in knowledge and use ("learn").

This suggests a definition of a model base for the purpose
of this study. A model base is a collection of models, where
models are analogous to data in the data base. The model
base will consist of models that either are user built,
built by a model builder internal to the organization, or
externally purchased. In addition, the model base must
support a variety of tasks and analytic approaches to
problem resolution. It is important to point out that
some models will be building blocks in other, more compre-
hensive models.

Some of the objectives of the data base management
system carry over to the model base management system as well:

(1) application independence;

(2) model update, creation, and deletion;
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(3) maintenance of a model dictionary; and,
(4) provision of a convenient user interface.

The issues of model base management involve practical
considerations as well as design theories. For example,
it is one matter to advocate convenient user interface, and
quite another to decide what "convenient" means.

Again, the field of AI makes important contributions to
the attainment of these objectives. This contribution
involves considerations about the type and organization of
knowledge important to the model base. Data base admin-
istration also provides important insights about the
problem of storing and accessing information about models.
Combining the contributions from each field may be fruitful,
especially when considering Dolk's model abstraction [Ref.
16], and Minksy's frames [Ref. 17].

Furthermore, we can discuss the specialized knowledge
about each model or model component within the framework
presented by Winston [Ref. 17] for expert systems. For
example, the model base builder and administrator must
decide how much information about each model or component
is appropriate. Too much information may render the system
unnecessarily cumbersome in terms of user response and
overhead; on the other hand, too little information may
similarly render the DSS inadequate.

In addition, the designer and the builder must deter-

mine what information is needed for model base management.
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This includes issues like: how detailed and specific the
knowledge should be, what generalities about classes of
models should be included, and which ideas and aspects
about a model instance are most important?

Besides asking what level of detail to include, one
must determine which items of knowledge should be included.
Should knowledge about the mathematical algorithm be
included? 1Is it likely this knowledge will be beneficial
in light of what we have said about human information
processing? What about lists of applications to which the
model has been, or could be, applied? Should the system
be self-teaching? For example, once a new application has
been identified by a user, should the list of applications
be automatically updated? Finally, what types of repre-
sentational techniques should be used?

In the preceding paragraphs there have been discussions
and questions relating to human cognition, organizational
frameworks, DSS definition, human information processing,
definition of the DSS, knowledge-based systems, and model
base management. The purpose of this survey is to identify
the important considerations and objectives of a DSS. From
this point, the scope is narrowed to model base management.
In the following sections, the gquestions and considerations
previously identified are applied to the major problem of
how to represent models and knowledge about models. 1In

essence, model management must meet many criteria (as
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must DBMS and DGMS). The way models are represented has

an important impact on the usefulness of the DSS.
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IV. A SURVEY OF ARTIFICIAL INTELLIGENCE :

FOR _MODEL BASE MANAGEMENT SYSTEMS

A. REPRESENTING KNOWLEDGE USING PRODUCTION RULES
As a means of representing knowledge, production systems
rely on condition-action pairs called production rules. Barr

and Feigenbaum [Ref. 18] assert that a production system con-

«

.
.1
i
-

!

sists of three parts:
(1) a rule base, composed of a se% of production rules;
(2) a context, in the form of a short term memorv buffer;
(3) an interpreter which controls the system's actibns.
A production rule consists of a condition part and an
action part. For example, a typical production rule has
the format:
IF (condition) THEN (action)
The context is essentially the list of all conditions
which must be met to execute (or "fire") the action. This
context changes dynamically as some actions might require

the system to satisfy other conditions, all of which will

reside on the context list.
The interpreter is an application specific program which 4
decides what to do, given that certain conditions are met.

For example, some tasks of the interpreter consist of:

PP Tard

adding elements to the context list, check for duplicates
on the context list, update the context list, and execute
the production rules.
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Some of the advantages of production rules include:

(1) Modularity--Each rule can be considered a piece of
knowledge in that it states a situation and shows what
should occur when that situation arises. Rules are easily
added and removed. This is possible because one production
rule does not call another; they merge only via the context
list.

(2) Uniformity--Because production rules are all inter-
preted by the same interpreter, they must be in the same
format. This has the advantage of being more easily under-
stood by a person not involved in the initial development,
therefore, it is somewhat self-documenting. Semantic nets,
discussed in the following section, are somewhat free-form
in comparison, making them more difficult to understand,
and more difficult to use.

(3) Naturalness--"If-then" types of conclusions are
frequently used by human experts in explaining what deduc-
tions they make in reaching conclusions. Statements saying
"what to do given a particular situation" are quite natural
to the human user. Semantic nets are not as precise in
their relations to a situation making them slightly more
cumbersome to understand by humans in a deductive situation.

Disadvantages include:

(1) Inefficiency--The advantages of modularity and uni-

formity require large amounts of rules to describe complex

and dynamic situations. This phenomenon, known as
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combinatorial explosion, creates extensive overhead in terms

of run-time and memory resources. Because of the precise
nature of production rules, plausible problem situations
have to be preprogrammed, making them somewhat inflexible.
In other words, production systems need a high degree of
knowledge management and structure.

(2) Opacity--It is difficult to follow the flow of
control of an interpreter firing off production rules. A
high-level language, by ccmparison, can be traced with
relative ease as it calls for subroutines.

As an example, consider a model kase ccnsisting of
forecasting, optimization, probabilistic, and simulation
models where optimization models consist of both nonlinear
and linear models, and in turn, linear models are tied to
applications such as transportation, transhipment, assign-
ment or goal programming. The sample production rules
might look like:

Production rule 1l: IF (objective function is linear)

AND (linear constraints)
THEN (put linear programming model

on context list).

Production rule 2: IF (units of commodity are to be shipped)

THEN (put transportation model on con-

text list).

The interpreter in this example separates the rules and

restructures them into a new statement which, when executed,

41

i

kA8 4 A

ca e Ao




B N N T N R ImRIrI———— P Bt A A Y Sttt g s ek et oot S et e cone o

oL
. i
v
*al
- @
e

. . , .
_—l A A .

accomplishes the action required. For example, this might
involve evoking a new program composed of action parts that
invoke the required model input procedures for the user.

In summary, production rule systems are useful when:

(1) the knowledge we are trying to represent is essen-
tially deterministic rather than heuristic;

(2) the processes carried out can be seen as a set of
independent actions; and,

(3) each action element is relatively independent of
other actions.

In terms of model base management, two factors determine
whether production rules are appropriate: what knowledge
will the system assume that the user has, and what knowledge
will be an integral part of the system? In the above
example, a user may not realize whether his constraints
are linear. It may demand a lot of a production system to
determine whether the problem calls for a specific model.
For example, in a production system each "if-case" must be
anticipated. In an unstructured setting, this is not
practical. All circumstances cannot be foreseen, therefore,
all rules will not make it into the data base; for this
reason, production systems are more suitable for stru:ctured

situations.

B. SEMANTIC NETWORKS
As a representational scheme, semantic networks have

been used in many applications [Ref. 19]. Their chief
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advantage is the ability to represent relationships between
states or objects. Barr and Feigenbaum [Ref. 18] define .
the notation of semantic networks to be a series of nodes
connected by arcs. Nodes normally represent objects or

concepts, and arcs represent relationships between them.

- Making inferences from the semantic network (or reason-

aoe v ETak_ o=y o

9 ing with the network as a knowledge base) has taken a variety

N - DU

f- of paths. One method is called network matching. Say, for
example, we have decided to represent our model base using
semantic networks (Figure 4.1). Suppose further that the

F. user needs to know i1f there are any models in the model base 2
that use such elements as "commodities shipped”,

"destinations", and "sources". He or she is not aware, nor

particularly concerned whether the model being sought is
linear. 1In effect, the user will develop a network fragment
such as that in Figure 4.2. This fragment represents a

problem instance. This instance is compared against the

network representation of the model base, and matches are
presented to the user. Of course, if there are no matches,

an appropriate response to the user might include closest

iacll s

possible models.

The power in matching is the inferencing it can support
when properly implemented. For example, suppose we want to
ask: "are there any models that analyze transportation

problems?" The network is depicted in Figure 4.3. This

ot adheadh e il

fragment does not exactly match the network in Figure 4.1. |
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The system would have to deduce, through several links, that
such a model exists. Through the model's "has-part" link,
optimization's "has-part” link, and linear-programming
model's "is-a" link, the identification of the appropriate
model is made. This is easy to accomplish from the semantic
network by examining the relationships to the model node.
The use of heuristics can augment this selection process.

If a language such as LISP [Ref. 20] were used to imple-
ment this knowledge base, its vehicle would be property lists.
A property list contains certain information about a specific
concept or object (node}j. On the property list of models,
for example, one would attach linear programming, nonlinear
programming, etc. On the list of linear programming models,
one would put the values of transpor?ation, assignment, etc.
In this manner a series of is-a, has-part, and similar-to
relationships are associated with certain properties. For
example, the first statement in Figure 4.4 would assign to
the property "model" the values "optimization", "simulation",
and "forecasting”. Statements two and three assign further

values to the subcomponents of "model". Statements four,

five, and six illustrate how to retrieve this information.

Thus, a series of LISP programs and property lists can
r® be constructed to analyze a semantic network. A central
problem in designing semantic networks, and one to be
addressed in this opresentation, is what properties and
relationships to include. Is-a and part-of are important,
but what others are important for model base management?
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1. (putprop 'model’ (optimization simulation
forecasting probability) 'instance

2. (purprop 'optimization '(linear non-linear...)
'instance)

3. (putprop 'linear '(transportation assignment...)
'instance)

4. (get 'model 'instance)
S. (get 'linear 'instance)
6. (get 'optimization 'instance)

7. execute the model

.
.
z
A
.
B
-~
b =
4

»!

.
v %

3
L

r

Figure 4.4: Building Property Lists and Retrieving Their
Values.
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Aggregate network structures are sometimes referred to
as frames. The idea here is that frames will contain all of
the has-part and is-a links of major conceptual parts of
the network. The following discussion of frames illustrates

this point.

C. REPRESENTING A MODEL BASE WITH FRAMES

Conceptually, a frame is analogous to a frame of reference.

As humans we are confronted with many situations which are
guite similar to previous experiences. We come to expect,
for example, certain things in a place we call a restaurant.
While we learn to swim, we begin to recognize the relations
between movement, bouyancy, breathing, and choking on water.
The next time we swim, hopefully we improve, for we have a
knowledge frame of reference about our environment which
becomes more detailed with experience. If a machine could
capture this human quality of applying past experience to
current situations, the potential for learning and problem
solution might be significantly enhanced. This is the
objective of Minsky's [Ref. 17] theory of frames. A frame,
as defined by Minsky, is a data structure for representing
stereotyped information about a situation.

Frames easily represent hierarchical information. At
top levels, certain generalities are included to represent
things always encountered in a particular situation--at a
birthday party there is always a cake. At lower levels,

sometimes called terminals, there are specific instances
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that distinguish it from similar situations. A pifiata, for
example, might give indications of the cultural heritage of
the group which could cue further searches.

Figure 4.5 illustrates the nature of the hierarchy of
frames as applied to our sample model base. An "abstrac-
tion" is a notion related to a frame. It is a structure
describing certain features about an object (in our case,

a model). An abstraction contains such Ehings as data
objects, and assertions describe the relationships between
them. Note that some information in the Figure can be
related to the notion of a model abstraction. For example,
knowledge about the behavior between the operators and the
objects is described in the transportation model with asser-
tions such as C(ij)~--being the cost of shipment of a
commodity between source i and destination j.

Frame implementations are another form of property
lists. The vocabulary of frames is somewhat different,
however. The property list is assigned to describe a
particular frame name. Properties now become identifying
characteristics called slots. Slots are the general charac-
teristics of an object or idea. Slots may take a variety
of values. (Tables in a restaurant may be either French
Provincial or Early American.) A slot in Figure 4.5,
for example, would be one of the linear programming models.

There may be several types of algorithms to solve the

linear programming models. Hillier and Lieberman [Ref. 24]
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Figure 4.5: A Model Base of Frames
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describe at least two, and these instances would be "facets"
associated with the frame name of Transportation Problems.
Facets are the values that a slot might assume. For example,
when talking about a restaurant that we have not seen, we
might picture what the tables look like. We have a mental
picture of booths or tables. Therefore, this picture becomes
a default value for the slot tables. In the frame, this
value is kept in the default facet. The value facet will
contain the actual value of the slot. If in reality our
restaurant had only stools and a bar, then the value facet in
the tables slot would have the entrv "bar". The value of

the facet would be the actual model instance. Depending

upon how the frame is constructed, there may be several
values associated with a facet. For example [Ref. 20],

the general form in LISP might be the frame in Figure 4.6.

In the process of trying to match a problem with a frame,
the various slots, facets, and values must be matched. Some
default values will be established, and the trail eventually
should lead to the correct (or most similar) existing frame.
It is during this process that a "frame gestalt" is developed
[Ref. 21]. A set of frames called the gestalt is selected,
based on clues from input or gathered during the search.

By examining each similarity and difference between frames,
the system minimizes the possibility of missing obvious
alternatives.

Frames show promise in settings that essentially are

information systems. Many frames linked in a knowledge
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base constitute a "frame system”. This frame system provides
for the creation, modification, deletion, storage, and
retrieval of knowledge from frames or related frames. The
frame structure is used for pattern matching purposes during
the execution of an application. The best example is a LISP
program called DOCTOR [Ref. 22]. The user inputs a sentence,
and the system matches it to a frame, looking for appropri-
ate responses within that frame. A sentence entered, such
as, "I am worried about my sister”, evokes the response from
DOCTOR, "Tell me about your sister".

In summary, representation of the model base in the frame
format provides for establishing relationships among alter-
natives at the same level, and hierarchial relationships
between model descriptions at different levels. In the
implementation of frames, Xnowledge about models is included
in the frame description. Considerations about both how
much and what kind of knowledge to be included is vet to

be discussed.

D. FRAMES AND ABSTRACTIONS

Turning our attention to a detailed look at the model
abstraction offered by Dolk [Ref. 16], the idea of a model
abstraction has its roots in data base management. It is
convenient to conceptualize model base management in the
same way we have learned to think about data base manage-
ment. This is especially apparent when attempting to

assemble data elements for an application in much the same
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way we desire to assemble models. The same functions
applicable in data base management are appropriate in
model base management:

(1) adding elements to a model,

(2) deleting elements from a model,

{3) creating elements,

(4) modifying elements of a model.

Figure 4.7 illustrates the general structure of a model
abstraction. It is clear that these procedures are impor-
tant to satisfy certain imperative characteristics of the
DSS, namely flexibility, adaptability, and user friend-
liness [Ref. 12].

Flexibility is achieved because the model abstraction

has the ability to adjust to changing circumstances.
Adaptability requires that new models be built in a trouble
free manner, which is also characteristic of the model
abstraction. Together these assets provide for a meaningful
dimension of user friendliness.

Using Dolk's abstraction for the Simultaneous Equation
Estimation Model (SEEM), we can take a detailed look at
an abstraction. An abstraction has three elements: (1)
data objects, (2) procedures, and (3), a set of assertions.
The procedures of an abstraction act upon the specific data
objects. Procedures such as creating an econometric model
can be found in Dolk's abstraction for SEEM. Other pro-

cedures found there include deleting and adding equations

55




faani A il Sl v ~— o e —— P—
N S A A M L M BN A S A AR AR T T S T S T T e T W™ = — 4 - mr v W~ ¥ » we— e = --1}

DATA OBJECTS

object 1 ?

: s
q

object i

PROCEDURES

procedure 1

procedure j

ASSERTIONS

assertion 1

assertion k

PR P

Figure 4.7: The General Structure of an Abstraction
[Ref. 1l6].
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to the model. These features support the requirement for

adaptability and flexibility so important to the effective-
ness of the DSS.

Data objects are those elements acted upon by the
operations. In SEEM, a data object is an equation which
might be recursive or simultaneous. The procedures add
and/or delete such equations to tailor the model to the
circumstances. Data objects are the essential building
blocks of the model, whereas procedures are the methods by
which the model is constructed.

Assertions describe relationships between data objects
and procedures. For example, an assertion in the SEEM
model is that equations are either simultaneous or recur-
sive. Assertions are important to ensure the proper
development and/or integrity of the model.

Some important similarities and differences exist
between model abstractions and the notion of frames.
According to Dolk, model abstractions form a knowledge
base for Model Management Systems (MMS). In addition, they
are viewed as templates for constructing model instances.
Facilities for doing this are not available, however,
therefore a more flexible structure, the frame, is being
considered. The model abstraction might be seen as a frame

with slots and facets for procedures, data objects, and

assertions. Abstractions, however, appear to be well-suited

for manipulating model elements internally. Frames, on the
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other hand, have the strengths of inheriting information
external to the model. A frame system containing such
knowledge as the class(es) of models could be used to
construct dynamically new frames and model abstractions
from existing ones. This would add deeper dimensions of
adaptability and flexibility in the model base management
system, which model abstractions cannot provide. The

next Chaoter outlines the specifications for such a system.
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V. ORGANIZATION OF KNOWLEDGE ABOUT THE MODEL BASE

The question to be addressed in this Chapter is "how
can frames augment model abstractions to form a more com-
plete knowledge representation mechanism?" Each method
has its relative strengths and weaknesses, but how can we
combine the rep:resentation schemes so the strengths of each
are retained? For this answer, we must reexamine the
capabilities of a model management system in context of

the frame and abstraction.

A. LEVELS OF ABSTRACTION

It is now clear, through the discussion on frames, that
they are well-suited for hierarchical organization of know-
ledge. Frames are capable of representing several levels of
abstraction quite easily. Model abstractions, on the other
hand, appear best suited for first and second level abstrac-
tions of the model base. A first level abstraction is the
lowest level of knowledge about a model. Lowest level means
that it has the most detailed knowledge about a specific
model. A second or higher level abstraction contains infor-
mation that can be generalized to more than one model.

The concept of levels of abstraction is important in
satisfying the objectives of a DSS outlined previously.
Since a DSS must support a variety of decisionmaking

processes easily, the system must be able to respond to
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users with varying levels of knowledge and expertise about
the model base.

Bonczek, et. al. [Ref. 15] illustrate the notion of
abstractions as applied to a knowledge base. Record types
and record occurrences are central to their theme. A record
type is the highest level abstraction, if it is not an
occurrence of another record type. For example, the record
for "models" is a record type. Instantiation of this record
type includes record occurrences of optimization, fore-
casting, simulation, and probability. These instances are
at one subordinate level beneath model. Cptimizaticn, for
example, is both a record type and a record occurrence of
models. Levels beneath optimization include linear and non-
linear models. These also are record types, as well as
occurrences, because linear programming models have such
instances as transportation, assignment, and transshipment,.
among others. Even these are not on the lowest level,
however, because actual model applications are seen as
instances of transportation and other algorithms. Figure
5.1 illustrates the logical and occurrence structure of these
levels of abstraction.

A model record, throughout levels two through five, is
determined by the problem it solves. It can differ from
similar records either by processing method, approach to
the solution, or input requirements.

Furthermore, construction and execution of a desired
model is based on modifying and combining various known
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"a typical logical structure

trans2

A typical occurence structure
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information-processing roles at all levels of the hierarchy.
It is this aspect that endows the model base with the
ability to be responsive to users with varying levels of
knowledge about models. Knowledgeable model users can
enter the knowledge base at lower levels of the hierarchy,
whereas novice users can enter at higher levels. Therefore,
the more levels of abstraction that characterize the system,
the more generalized it becomes, and the less knowledge
about the model base is demanded of the users.

Frames are ideal for representing knowledge on several
levels of abstraction because of their ability to inherit
from associated concepts and skills. On the other hand,
model abstractions have the ability, through the use of
assertions, to link to the data base in an orderly and
efficient manner. 1In addition, the use of model abstrac-
tions has the added advantage of convenience. It is easier
to think of the model base in the same terms as one thinks of
the data base. In fact, model abstractions by definition
and structure, are data base compatible. They are, however,
limited in their ability to represent knowledge. Therefore,
there exists the need to augment them with the character-
istics of the frames. The next subsection compares these
methodologies in detail, and proposes a means for combining

them.
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B. .COMPARING FRAMES AND ABSTRACTIONS

Attention is next turned to identifying exactly which
functions of the Model Base Management System are best
supported by either models abstractions, or frame systems.
It has been previously asserted that a MBSB must create
new models quickly and easily. Because frame hierarchies
require less expert knowledge from the model builder,

frame systems more easily can create new models, and
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knowledge about those models, than can model abstractions.
We have asserted that model 2abstractions are at the second
level of abstracticon. This is, however, only true if these
abstractions identify their terminals at the first level.

This is assumed and easily accomplished. Even at the second

level, though, an intelligent user must somehow select and
sequence processes for the model instance. Ideally, this
selection and sequencing process would be automatic given
the problem domain. Frames are well-suited for this process
of integration because of their ability to reflect asso-

ciations, inheritance, and similarities. This knowledge

assists the model builder, whether manual or automated, to
determine where the building blocks fit.

l Model sequencing involves ensuring that models are

F. executed in the proper order. Frames can assist in this

process because of their hierarchical structure. For

example, once a model frame is created which has more than

é, ) one model building block, information about all the building
X
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blocks becomes a part of the knowledge base, including
information about when building blocks are executed.
Accessing existing models and model building blocks is
another vital dimension of a model management system. This
aspect also is better supported by the hierarchical struc-

ture inherent in frames. The access method may be quite

general using frame linkages from any level in the hierarchy.

Identification of optimization models may be done quickly
without specific model names or structures. This is not
apparent in model abstraction.

Conversely, model abstractions apoear better suited for
cataloging models. Information about procedures, data
operators, and assertions for each model are important when
manually evaluating or otherwise auditing the model base.
The convenience of recording model base information in
the same format as data base information contributes to
clarity, economy, and consistency. In comparison, short of
selectively reformatting knowledge, much of the knowledge
contained within a frame would make little sense to a human
user.

Model abstractions appear more appropriate in linking
the model base to the data base. This primarily is due to
their ability to validate how objects are structured and
how procedures act upon those objects. These abilities are
not inherent in frames, and would have to be builtin.

Model abstractions appear better able to manipulate a

specific model once it is accessed through a frame scheme.
64

T Y VLU LRIV

P SR PR

X+ P

i ool ol ol i




:

TEETFRTETETATY T T W T e T W TR T W T o oW w Y - 'j

I'e

Model abstractions accommodate modifications for a specific

T -
T, Dol ad
L
'

‘
auy o .
. o, ., o
I L PR
. P L. .
. L Lo L 4 P

model instance. As each model instance will have subtle
differences, this ability is wvital.

The development of models involves bringing together

different classes of models. Some models might require
both economic forecasting and linear programming models.
Because of the frame's ability to hold knowledge about
different classes of models, a frame system appears better
suited for model creation. Figure 5.2 summarizes these

comments comparing frames and abstractions.

C. COMBINING FRAMES AND ABSTRACTIONS

Now that the advantages of frames vis-a-vis abstractions

*}f ' have been compared, the next issue to resolve is which
features to extract. Additionally, a decision must be
made about the abilities a frame system should have, and
also what specific information should be included in this
“-. system?

The abstraétion concept presented by Dolk [Ref. 16]
remains virtually intact. The structure of the abstraction
will change slightly to fit into the frame system to be
developed in subsection E. The use of the abstraction will
alter conceptually as well. Third level abstractions
essentially will become frames with slots and facets hold-
'gﬁ ing the information that the third level abstraction prev-
'ia iously held. The lower the level of abstraction, the more

specific the information becomes, thus fewer changes are
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required to the abstraction. 1In other words, the essential
aspects {(such as data objects, procedures, and assertions)
play a vital role in the frame system. Data objects still
provide knowledge of what elements of the model are manipu-

lated by the procedures. Assertions still will state

characteristics of the specific model, such as linear
objective functions and constraints. Finally, procedures
still will identify those operators that will satisfy the

objecti ves of the MBMS by additions, modifications, etc.,

K|
‘i
Ll
5
*
b
«

to that model.
In general, a frame system will perform a number of
functions ([Ref. 20]:
(1) once a frame, slot, and facet have been provided,
the frame system will fetch information from the frame;
(2) it can put information in the appropriate frame,
slot, and facet location;
(3) it has the ability to remove information within the
frame, or remove the entire frame;
(4) 1if no special information is available for a model,
default values should be accessed;
(5) inheritance from parent or otherwise associated
frames should occur; and,
(6) inheritance for default values also should occur.
All that remains is to generalize about the information
a frame system manipulating model knowledge should have.

This is dependent largely upon the level of sophistication
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anticipated of the users, and the complexity of the
application. Lenat [Ref. 23] suggests that in addition to
procedures, data objects, and assertions about a specific
model, we would like to know:

(1) Generalizations--Which other models have less
restrictive requirements (facilitate nonlinear constraints
for example)? 1In essence, we move up the hierarchy of
constraints with this information.

(2) Specializations--Which models are specialized
applications? For example, the transportation model is a
specialization of the linear programming model. We will
call these specializations. Here we move down the hierarchy,
adding constraints to our model formulations.

(3) Examples--For what kinds of situations is the model
appropriate?

(4) Is-a--What kind of model is it (e.g., optimization,
forecasting, etc.)? These will be identified through the
is-a link.

(5) Views~--How can a view of the specific model in the
context of another be obtained? For example, how is integer {
programming similar to other linear programming models,
and how is it different? This might be called information ]
views. 3

(6) Similarities-~What other model(s) is the current

instance similar to?

(7) Definitions--How can it be determined if the

circumstance at hand will fit a model in the model base?
68
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(8) Preparations--How can the input model be prepared?

TTTTY
A

1 This can be called "preparations". ;
>
E (9) Integration--Can this mcdel be integrated with |

other models?

(10) Execution--How should this model be run? y

Figure 5.3 is an example of how this abstraction would
look when combined with knowledge about frames.

We now are prepared to develop a simple example of how

all this information can be resident in a knowledge base of

frame representation. The next section develops such an

implementation.

D. THE MODEL DOMAIN

The knowledge base presented here makes use of typical

examples of models used in a business decisionmaking

environment. This knowledge is organized into a frame
system. Frames intuitively are pleasing for this task. {
Problem solvers normally have a frame of reference tli.*% !f
includes the parameters of the problem. For example, a -;

distribution system manager may have a problem involving

5 sources of product, destinations, and cost minimization.

- It is the goal of the frame system to accept what the user
knows about a problem, and to translate it into knowledge
about a model instance. This is a matching process, i.e., F
an effort to bring the problem and the model together ;;

through an interpretation of the parameters.
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The concept of hierarchy is important to facilitate the
notion of inheritance. Frame representations are ideal here
for modeling work. As the problem solver clarifies the
issues involved, there is a movement from the general, or
high level of abstraction, to the specific, or lower levels
of abstraction--possibly to an actual model instance.

In our example, the world is subdivided into two major
categories, shown in Figure 5.4; these categories are
optimization and forecasting. This is, of course, a simpli-
fication for the purpose of demonstrating the use of frames.
Optimization problems are composed of linear programming
and nonlinear programming models. We do not expand the
nodes of forecasting nor nonlinear programming. Linear
programming is composed of the transportation model and the
assignment model. Finally, the transportation model is
subdivided into actual instances of the algorithm, namely
transl, trans2, and trans3.

Figures 5.5 and 5.6 are examples of the frames contained
in the knowledge base. The level of the frame in the
hierarchy determines the level of detail in the frame.
Figure 5.5 is a first level instantiation of transl. The
detailed knowledge about transl is extensive. Figure 5.6
is a fourth level frame; the knowledge contained in the
"optimization" frame is relatively general and limited.

The concept of general to specific is common among decision-
makers as they attempt to match parameters of their problem

instance to a solution method.
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transl trans?2 trans3 J
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Organization of the Frame System.
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(transl (features (value (adjective)))
(ako (value (transportation)))
(generalizations (default (linear-programming)))
(specializations)
(example (value (sources and destinations)))
(views (value (northwest-corner, stepping-stone)))
(analogies (value (trans 1l trans2)))
(definitions (value (cost of shipments)))
(input (value (script for input)))
(sequencing (value (script for sequencing)))
(execution (value (script for execution)))

Figure 5.5: Example of a Lower Level Frame.
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(optimization (features (value adjective))) g

'(adjective-function (value (optimize))) 3
(ako (value (model)))
(instance (value (lin-prog non-lin-prog)))

x“l-

Figure 5.6: Example of a Higher Level Frame N

74

| RSP IPIPOREP PP Vs




S N VT‘E-F".‘Y..‘:

T s
. al ]
. . "y ': . N

e e o
e

A Mg St 2
a TreereY

Finally, in our model world, user interaction is required
as we migrate from one level to the next. The user must
specify which node on the next level needs to be expanded.

A demonstration of a simple frame system follows.

E. FRAME SYSTEM FUNCTIONS

The frame system implemented here is an adaptation of
Winston and Horn's [Ref. 20] frame system to a model know-
ledge base. There are 15 programs in this system, the
major features of which are demonstrated below. They are
written in LISP, and are contained in Appendix A.

The simple frame system developed here is unlike the
abstractions developed by Dolk [Ref. 16] in one important
regard: this frame system does not currently include
oredicate calculus statements. Because predicate calculus
is not incorporated, the present system is not able to make
deterministic inferences about models and problems. Predi-
cate calculus would be straightforward to implement within
the facets of the frame structure. The following para-
graphs describe a basic frame system capable of expansion
to a full-knowledge representation scheme.

The program FGET retrieves information from a frame if
it is given a frame, slot, and facet. It is worthwhile to
recall that a frame possesses a name, some general features
which are slots, and some words describing those features
which are facets. Thus: (fget'transl 'ako 'value) returns

transportation.
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Conversely, FPUT places information in a frame given
the frame, slot and facet: (fput 'trans2 'ako 'value
'transportation) returns (transportation).

If this information is later learned to be incorrect,
FREMOVE will erase it: (fremove 'trans2 'ako 'value
'transportation) returns (t).

The "ako" element above stands for the phrase "a kind
of". The ako slot is very useful for inheritance. All
transportation models have certain things in common. These
common characteristics would appear under the frame name
of "transportation". Instances of transportation models,
such as trans2, would inherit these elements. For example,
trans2 would inherit the element of linear programming.

Frame functions may look in several facets to satisfy
a request. FGET-V-D looks first in the "value" facet,
and then in the "default"” facet, in an attempt to ratrieve
information: (fget-v-d 'transl 'generalizations) returns
(linear-programming) .

Recall that the "value" facet holds the actual value
for the specific slot being described. 1In the restaurant
example, the tables slot might have had the wvalue "French
Provincial", and the default may have simply been "booths".

In addition, if the frame system fails at finding
information in the value or default facets of the slot,
it may look for something in the "if-needed" facet; this

is the role of FGET-V-D-F. The if-needed facet contains
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procedures to be executed if the value and default slots
have no values in them. 1In this case, the system searches
{ first for a value and then a default, and failing at these,
&? it looks in the if-needed facet. It finds in this slot a
Q' "demon"--a function that is executed when nothing is to be
_ found in the value or default facets:

(fget-v-d-f 'transl 'specialization)
returns (please supply a value for the specialization
S slot in the transl frame.)

>'transshipment

returns (transshipment) .

A function called FGETCLASSES returns the name of all
frames that a given frame is related to through the ako
slot. In this case, the ako slot acts as a link to higher
generalizations about the transl frame:

(fgetclasses 'transl)
returns (transl transportation (linear-programming)).
This is very useful for inheritance among frames that are
linked through the ako slot.

FGET-I is a program that looks for information in a
related frame if it finds nothing in the current frame.

In the following example we find nothing in the transl
specialization slot, so we look for it and find it in the
specialization slot of the transportation frame. In this
way subordinate (or child frames) inherit information from
senior (or parent) frames: (fget-i 'transl ‘'specializations)

returns (transshipment).
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Finally, demons may be activated if we add a particular
facet to a frame. Say, for ex mple, that we add an instance
to a frame, it stands to reason that a frame should be
created for each instance. We put these types of demons in
the if-added facet of the slot in the frame associated
through an ako link:

(fput+ 'transl 'specialization 'default 'linear-

programming)

returns (procedures to be followed when adding specializa-
tions).

Two interesting features of the frame svstem are accom-
plished through the functions FCHECK and FCLAMP. FCHECK
is a function that takes as input a frame name, slot, facet,
and value, and checks to see if that value exists for the
specified slot:

(fcheck 'transl 'ako 'value 'transportation)

returns (t) if true, and (nil) otherwise.

FCLAMP is a function that ties two frames together so

that anything that goes into one frame will go into the

other. It takes as input the two frame names and the slot
that is to be duplicated between them. It works like this:
(fclamp framel frame2 slot)
ﬁ! Now anything that is entered in the specified slot will be
entered automatically into the other frame. It may be an
F#Z interesting incumbent of the if-added facet.
o
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This summarizes the abilities of the implemented frame

system. In the model domain, the strength of any system

Ty T

can be found in its matching and reasoning ability.

Suppose the user only knows that the problem at hand

deals with minimizing the costs of shipping gocds from

Py
" it Tl
. PN P

some sources to destinations. The resulting candidate
frame will consist of only a few slots: costs, goods,
sources, and destinations. Armed with this information,
the system tries to match this candidate frame to existing

patterns in the knowledge base [Ref. 25]. A frame system

A AL Ll o TETrrrTey
NSRS -4 LELL A a s

has the ability to respond to this type of sketchy problem
by answering several important gquestions:

(1) Does this candidate match an existing frame?

(2) If it does, is it an exact match?

(3) If it is not an exact match, which elements would
have to match to make it an exact match?

(4) Are the unmatched elements so important that the
pattern can not be used?

(5) If the existing pattern can be used, how would the
candidate elements be translated into the existing
pattern's elements? (For example, how can we decode
that goods are equivalent to commodities?)

A frame structured knowledge base with these reasoning

capabilities makes for a robust system.

Once the appropriate model has been found, the user

needs to know how to prepare input for it, and how to use
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it (execute it). Here the idea of a script is introduced
{Ref. 18]. A script generally is defined as a standardized
sequence of events describing some activity in stereotypical
fashion, such as eating food or visiting friends. The
script is similar functionally to a frame, and thus fits
neatly into the knowledge representation presented here.
Most important, however, is its ability to anticipate
certain events in an activity. Figure 5.7 is an example of
a script. Scripts appear to ke ideal for preparing input
for a model, and for executing a model.

Input preparation might include such tasks as format-
ting, sequencing, editing, etc. The next section attempts
to make it easier to use a2 frame system by attaching a

simple English-like command language to it.

F. ENGLISH-LIKE COMMAND SYSTEM

One of the impressive strengths of the frame system is
its ability to respond to English-like commands. Frame
representation languages have been developed to take
advantage of this strength [Ref. 14].

The front-end implemented here is a simple noun group
parser which is explained more fully in the following
section. It is written in LISP, and also is an adaptation
of Winston and Horn's [Ref. 20] English compiler. The
programs are listed in Appendix B, and a short User's

Guide is enclosed in Appendix C.
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(input-preparation (model (value (transl))

(instructions (value (formulate tableau)) :
(first (name rows and columns) J
(second (assure rhs's are positive))
(third (specify rows + 1))
(fourth (svecify variables)) ;
(fifth (enter reader number))
(sixth (enter printer number))

(seventh (adjust dimensions)) i
(eighth (adjust format statements)) i
(ninth (call execution)) {

R N T I

Figure 5.7: An Example of an Input Script. %
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As input, our system receives a command verb such as :

‘
‘
«

P

o

"identify", and a list of adjectives clarifying a ..oun
(see Figure 5.8). This results in an easily used sy.“‘em
that is more friendly to the user than the frame system
previously described.

For example, in the previous section, the command
"to identify" the transportation models was:

(fget 'transportation 'instance 'value)

returning (transl trans2 trans3).
With English-like language we now can ask simply: g
(request: 1identify the transportation mecdels)

returning (there are) (transl trans2 trans3). In addition,

IAISHICET ¥ VPPN

if the user wants to count the number of transportation
models in the model base, the command is given as:

(request: count the transportation models)
answering (there are) (3).

Of course there is a full range of commands required in

L .A_'A‘;‘J sbeniasinan il £,

model base management such as: add, delete, and modify.

This command structure can be accomplished easily with the

LISP programs contained in Appendix B, by modifying the

_—p :‘ PV

parse-command program to "execute the frame programs
previously identified".

;i This system works in four phases as illustrated in

N P

Figure 5.9. When the noun phrase is entered, the first
event that occurs is the building of a parse~tree. The

f. parse-tree contains such items of interest as the list of
L .
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adjective(s)

Figure 5.8: Schematic of an Augmented Transition Network.
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" Figure 5.9: The Four Phases of Answering the English Query
[Ref. 20].
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adjectives, the noun (whether singular or plural), and
whether the determiner was definite or indefinite, Figure
5.10. This tree is placed on a property list for the
specific input phrase. The second step involves accessing
these values and constructing a temporary LISP program f£rom
them. Third, this newly constructed program is executed.
During the execution, it retrieves from the knowledge base
(of frames) items meeting the qualifications identified by
the adjectives of the input phrase. Fourth, the results of
program execution are processed and presented to the user
as a response to the input reguest.

Of course, one would want to do more than simply identify
the models, or to know how many of a given model class of
models exist. A full set of commands would include all of
the manipulation parameters previously mentioned. For the
model domain, this is a relatively compact vocabulary,
dependent upon the degree of adaptability of English the
builder wants to incorporate. For example, the system in
Section Four can answer the question: "Identify the models".
However, if the request is phrased "which are the models?"
the system could not respond. While natural language
interfaces can be difficult to implement, an English-like
command vocabulary is a realistic objective with a high
payoff in usability and flexibility when combined with

frame system knowledge base.
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Input: A typical sentence.

node: children: (A typical sentence
determiner: indefinite number:
singular adjective(s):
typical noun:

sentence.

Figure 5.10: General Structure of a Parse-tree (Ref. 20].
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VI. CONCLUSICNS

A. AREAS FOR FURTHER RESEARCH

The purpose of this section is to summarize the research
presented, and to present areas for further research. The
first area for further research involves developing the
English-like command system for a frame representation
scheme on a model base of representative models. The
overall objective is to develop a vocabulary to access,
integrate, and manipulate both the model base and the
data base. A second area of research would attempt to
identify what specific knowledge is required in a compre-
hensive model base.

In our example we used frames, with an Augmented Tran-
sition Network (ATN) as a knowledge base only. That is,
our English-like commands did not invoke the frame functions
described in Chapter IV (E). In our system, the user was
required not ornily to know how to manipulate frames with
frame functions, but also to know an English-like command
vocabulary. Therefore, in addition to developing all of
the manipulation commands for model base management, our
English-like system should, in the future, invoke the frame
system functions as well.

Since we expect the user to become acquainted with our
modeling language, it would be most convenient if those
same commands interfaced with the data base. This raises

many issues:
87
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(1) In which data structure should the data base be
implemented? Are frames appropriate for typical
data items? Do human factors such as response time
outweigh the convenience of common English commands
for the data base and model base?

(2) If data are not organized the same way models are,
how much system maintenance overhead will be incurred
to integrate models and data?

Once we have developed basic English-like commands for
our interface to the model base, usage becomes an issue.
Are there scme commands used in sequence so Iregquently as
to warrant a macro-command to accommodate users? For
example, is the command "identify" issued in sequence so
often that a command such as "browse" is appropriate? Or,
is the sequence "identify" and "update" so frequent that
a single update command would both access and update a
frame? Other usage statistics may involve performance
such as response-time, or session-time, for a specific
request. Still others may look at the size of the knowledge
base relative to performance, and identify that knowledge
rarely accessed for possible pruning.

Thus the field of natural language, and English-like
command languages, have interesting challenges and signi-

ficant payoffs.
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B. IMPACT ON THE DSS PARADIGM

This study has focused on the problem of managing know-
ledge about models within a DSS. Consequently, the para-
digm presented in Figure 2.4 differs only in regard to
its modeling component. Figure 6.1 illustrates this change.

The dialog management system still must pass to the
modeling component the appropriate commands and identifiers.
In addition, the data base still must pass to the model base
the information required to execute the models. Furthermore,
the presentation of model results remains unchanged.

The essential feature that has changed is the concept of
a frame management as a model base management facility.

The frame management system is one of several front-ends
that may have been applied to the problem. Production
rules are another favorite among builders of expert systems.
The frame management system was éelected because of its
adaptability and flexibility. It has, we believe, the most
promise of model management schemes to date.

This paradigm thus becomes a more powerful configura-
tion of Figure 2.4 The underlying reason for this improve-
ment rests with the fact that the knowledge base now resides
with the model manager, and not with the user. The value of
this improvement is significant, as Keen [Ref. 2] helps to
point out:

(1) because it is easier to access models, the number of

alternatives considered will increase;
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Figure 6.1: A DSS Paradigm with Knowledge Base Support.
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(2)

(3)

(4)

(5)
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because the frame configuration facilitates a

variety of approaches to a situation, it is respon-
sive to unexpected demands and situations;

there is a cost savings in clerical labor for the
collection and massage of input data for manual

modes of execution.

there is a time~savings realized because the time
using the system is more effectively spent; and,

all of the above will increase the quality of
decisions made, and the effectiveness of the resources

consumed for the making of that decision.

C. SUMMARY

This investigation has made the following attempts:

(1)

(2)

(3)

14)

to identify the myriad of requirements and challenges
faced by the implementor of a DSS;

to identify the areas of AI that might be of value

in modeling the decisionmaking domain of an organ-
ization;

to show how model abstractions can be extended to

the concept of frames; and,

to implement a simplistic frame system as the basis

of a model management scheme.

This study has been an attempt to bind together the

fields of organizational behavior and computer science in

areas divergent from traditional data processing. The

convergence of Artificial Intelligence and Decision Support

S T . S T T O O T o
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Systems is a promising area of research. Some forms this
research might take with regard to model management have
been presented.

As Minsky said: "Thinking always begins with suggestive
but imperfect plans and images; these are progressively

replaced by better, but usually still imperfect, ideas.”
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PROGRAM LISTINGS FOR THE FRAME SYSTEM
. [Ref. 20]
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(defun fget (frame slot fAacet)
(mapcar ‘car
’ (cdr (assoc facet
(car (assoc slot
{Car (get rrame “fraveli)))i))

(detun fassoc (xev a=:1s5T)
(cona ((a8ssoc «ey (ccr a=lis%)))
' (£ (caar (reolacc tlast a=-1ist)
(list (145t kay)))J)))

(defun fgetfrare (¢ra.e)
(cona ((set trzwe “frame)) )
(t (putprow frave (list trame) “frame))))
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) (defun fput (frame slot facet value)
d 4 i (cond ((remper value (fGet frame slot facat)) nil)
! (t (fassoc value
(fagsoc tacat
~ (fessoc slot
- ' (tgetframe frame))))
i value)))

(detun p (message)
“ (print (squasn nessage)))

vl (defun sguash (s)
o ’ (cond ((nuil s) a1l)
((atom s} (list s))
o (t Capgenn (squash (Car s))
S ) (squasn (ccr s))))))

(.. (defun builder () )
b ’ (fput “a “teacures °value ~aterminer sincular indefinite))
(tput “the “teatures °val. “(deterrminer vetinite))
(fput “long ‘aclective=tfunction “value “lonyp)
(fput “long ‘“fa2atures °value “(anj2ctive))
(fput “rea “features ‘value “(aojecrive))
(tput “large “twatures ‘valte “(aajective))
(fput “large “s;cjective~tunction “value ‘larqep)
(tput “scresirivers “features ‘value °(nour pilural))
(fput “screscriver “instance °valu=e ‘(31 $2 $J $4 s5))
(fput “scresarivers “singular=fcrm ‘value ‘screwdriver)
(fput °screwcrivers “teatures “vaiue ‘(nodn plural))
i (fput “s1 “size “value ‘Ldrye) .
ST (tput °s2 “sizm “value “larce)
‘ (fput °s) “sile °value ‘iarae)
W SN (fput ‘moacei “teatures °value ‘(agcun singular))
f (fput ‘model “instance °‘vaiue “(ovotimization torecastina
’ linear=proararwiry nonelineareproaranming
transsortetion 4ssicpi.ent trans! transz transd))

(tput “mocels “toaciures ‘value *(nouun wvlural))
(tput ‘rogels “singular=torus "value “‘rocel]

'!L (fout ‘optimization “festures “value “(3agjective);

AR (ftput “optimization “aajective~functicn °value “octimize)
e (fput ‘optirfzation “sxo0 ‘valye "Touced)

s (fput ‘optimization “instance “value °“(linear=Lrecranaing

nen=linear=gracrancing))

: .94
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(fput “transi “features °‘value ‘(aalective))
(fput “transi "ako °‘vAalue ‘rranssertaticeny
(fput °trans! °“generdlizations °‘vaiue °"linear=progranming)
(fput ‘transl “specializations °‘if=neecec ‘asx)
(fput “transl “exarnle ‘value ’(sources anu cestinatlions))
(fput “transi °"viess ‘value ‘(rorth.est ccsrner))
(fput “trans) “apalcatles “value “(transl transs))
(tput ‘transl “aecinitionss ‘velue “(costs of snigpment))
(fput “transi “input ‘vilue °(scris" tor iroyt)i
(fpyt “transl “sequencing ‘value ‘(sCrist for sejvenciny))
(fput “transl ‘execttion “velue “(script ror execution))
(fput "transportatlon “‘fecruress ‘valle ‘“ladjsctive))
(Sput ‘transportatian “4xn ‘velle “{linearecrscrarmingl)
{fput “transportation ’sceclellzazions “value “transrnipg-ment)
(EFUt “transportation “snecileilations “Iir-adrdes “3sk)
(fput °transportaticr ’1Ascarce "velde ‘(Cransl Trans2 transi))
(fput “transportation ‘aqjective=function “valus “transport)
{fput ‘*forecasting °axo “value “~cgel)
(£put “lLinearecrogrs--i"3 Ure fvalue “(aziectivel)
(fput "linear=crcurss 23 *zrvature “vajlue *ortimizaticn)
N (fput “linear=-crourariin; “da¢l ctive~gunction “"v4luye “iinorog)
; (fput *iinear=~troara...in9 “instsnce "vaium “(Lranssortatlon assignment))
‘ (fput "non=linear=<reoir2asing “in3 “value ‘optimization)
{(fput ‘*assignment °“4x0 ’value "linear=cre-iramring)
(fput °transd “axko “value “transvertaclion)
(fput °trans2 “featires °value “iLezlective))
; (fput °trans2 "axo “vsile “Irenssortation;
A (fput “trans? ‘speclalization ‘vdlue “transsniprent))

St el e e e e v e o e e e aae .

(defun fremove (frame slot facet va je)

’ (prog (slots facets values target)
(setq slots (fcettrase rrame))
(setg facets (a2ss50C Sslot (cor slcts)))
(setq vaiues (asscc fscet (car tACers)))
(setq tarcet (asssouC value (car vaiues)))
(delete tary2t valuos)
(cond ((null (cor valu=s))

(aelete vaiuers 2acets)))

: (cond ((null (car zacets))

: (nelete tacets slots)))

(return (not (null taraec)d),)

(detun fcheck (rrar2 slot fscet value)
(cond ((member valuys (gcet rrarte slet facet)) %)

(t nid) N
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(defun fclsmp (frarei trasre2 slot)
{rplacd (fassoc slst (tcettrarme frarej))
(cdr (fassoc slot (tuettrame frarez))))

To. . - . .
SOOI SO

slot)
(defun fget-v=d (fra.e slot) .
(cond ((fget tra.e siot °value)) .
((fget frame siot °detault)))) .

L -

v

(defun fgetevedet (¢trare slot)
’ {cond ({tget fraze slot *value))
' ((zqget traue slot %defualt))
(t (rarcsn “fancall
(faet trare slot “i<-reegezl)id))

L I AG Ak 4 8 0 )
[

(defun asx ()
: " (print (apcend “(zlease suvply a list for the)
’ (list siov)
¢(slot 1In tne) -
(list traane)
*i{frare)))

(read))

(defun foete-i (frame slot)
(prog (classes rasult)
(setq classes (tgetrclasses trame))
loop
(cond ((null clesses) (retures nil))
((sety resuvit
(toet (car clésses) slot “velue))
(return resvlt))
(t (setg classes (car classes))
(30 loopl)l}) _ s

(defun fput+ (frame slot facet value)
(cond ((tput fraere slot tacet value)
’ (magcar “(laroca ()
(racgalr “furcall
tfcee . e slet “1f=aques))) .
(f3etclasses frasne)) . -
value))) -

S [

.
B,
PP )

e N
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(defun fgetclasses (franme)
' (prog (queue proueny classes)
(setq 3jueve (lisc frame))
tryaasain
(cond ((null yueue) (return (reverse classes)))
((not (rempber (car gueile) classes))
(sety c.asses (cons (car sueue) classes))))
(set3 proceny (tget (Cor Queue) ‘ako “value))
(setq queue (ccr aueye))
(setg jueue (acrend aqueve praocenv))
(go trvagain)))

(defun fget=2z (frare slot)
' (prog (classes result)
(setq classes (tzetclasses traune))
loop
(cond ((null classes) (recurn ntl})
((setq resule
(or (rgete-v=a (car classes) slol)
(rapcan "{lamccéad (e) (aprply e nii))
(tget (car classes) slot “1t-needed))))
(return result))
(t tsety classes (cdr classes))
{go loon)))))

(defun fremove+ (frame slot facet value)
(cond ((tremave trare slot ta2cet vzlue)
(mapc *(lampda (e)
{mapc “(laxba ttr) (aociy £ nil))
(fget e slot “js=reraoved)))
(f¢7etclasses 1rcie))
value);)

(defun tget=n (frame sloc)
(prog (classes reeyjt)

(setq classes (fqmtclasses trane))

loopl

(cono ((ruli clAasses)
(setq classes (i;etclaﬂses irace))
(o loos<))
((sety result (rset (Car classes) slot ‘value))
(retyrn resylt)) :

97
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loop2
(cend

loopl
{cond

Dtdiadea el 2 0l 9 ot -

(t (setqg classes (car classes))
(g0 loopl)))

((null classes)
(setq classes (fyetclasses trane))
(90 loop3)) )
((setg result (fcet (car classes) slot ‘default))
(return resultc))
(t (setq classes (cdr classes))
(90 1lo0€2)))

((null classes) (return nil))
((setg result (mapcan “(larpua (e) (aoply e nill})
(fuet (car classes)
slot
“{t=neeaed)))
{return result))
(t (seta classes (car classes))
(9o lo00¢3))1)))
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APPENDIX B

PROGRAM LISTINGS FOR ENGLISH-LIKE COMMANDS
[Ref. 20] |

(detun reguest: gexnr (rerainira=words)
(progQ (tree ¢rograic r25ylts NOUN=Yrouc)
" (setq tree (parse=cerrana (gensve) nil))
(setq program (-A«<2-§23arcr-srogrei (get tree ‘poun=qaroupl))
(seta results (evsl proaraer))
{cond ((2qual (get tLree ‘ccoruwara) ‘count)

(cond ((¢ar resulis) & *iIner2 are))
{9 (lencth results)))
(results (p °*(trnere {(s})
(e 1))
(t (p°(sorry the razuest anc catas base clash))l)))
((equal (get tree ‘comranc) “enurerste) :
(cond ((cdr results) (r “(tpe results are:))
(o resylts))
{resclts (p *(tre result is;:)]

(¢ results))
(t (s7(s0orry tne rex.est anc the ¢ata bise clask))))))))

(defun compile racro (descriction)
(prog (name pogy pPrIGran pbesinriry <i2dle end)

aaloa.p

(setq nare (cscr ~escriztien))
(setg pboay (caaer iescriivion))
(setg deqirnins
| (supst naue
‘repléce
’(proq (tris=rone role)
(setg rald renginiraewgres)
(setn current=scrs (cer remainring=woras))
{setn this-rode (uenname “reglace)))))

(setq
‘miAdle
(apely
‘append
(rapcar
‘(larpaa
‘(state)
{list (c:r stace)
(cons “corn
(artera
(r-apcar
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’(laroua
(clause)
(appena (list (caar clause))
(conuy ((ccdudr clause)
(cer (caacer clilause))))
(1ist (list °go (cacodr clause}))))
(cor stace))
(Lt (g0 lcse)))))))
body))) .
(setq end
‘(win (cond ((not (testt this~nocde teatures)) (qgo lose))})
(attach tnis=rnoge rparenterode)
(seta last-rarsea tniseroce)
(return tnis~noge)
lose
(seto remaininc=-asoraos hola)
(sets currerte=ora (cef remainina=worcs))
(return nil)))
(setq progra~ (auveena ce3innina mizule engj)
(return (lisc ‘gefun rare “(pareant-roce features) program))))

(defun makeesearch~rrosras (nocue)
(appena
(suost (rroa (nsun)
(setq noun (get nese °roun))
(return (cond (trmencer “vlursi (car (fcet noun °teatures °"valuel)))
(car (faet noun ’singular=-torm ‘value)))
(t aoun}))))
‘noun
‘(prog (ocjects)
(setg oojects (car (fzet “noun ‘instence °“value)))))
(mapcar
“*(lambda (anjective)
’ (sucst (car(taoet adjective “adjlective=tynction °“value))
’ ‘predicete
‘{seto cclects
(maocan
‘{lamtaa (canciocate)
’ (cono ((predicate candidate)
(list canatoate))
(¢t ril)))
onjects))))
(get noace ‘aqsectives))
(subst (prog (zeta2rriner turcer)
) (set3 seterrinsr (get noue ‘qeternlner))
(s2ats auanber (uet noce “nyrrer))
(raturn
(cond ((enu3l cFeterninAar “netinite)
(cora (Legual aurcar *sirgular)
‘tecucs (lerctn criects) 1))
((ecval nuater “rlurad)
*(greataros (lenctn objects) 1))))
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((egual aeterniner ‘inaefinite)
(cond ((equal nunoer °“sinqular)
*(areaterp (lerqth oblects) 0)))}
({nuroerr nurter)
(1ist “areatery “(lencth oojects) numter)))))

“test :
“((cona (test (recurn czlects)) :
(t (retuzr nil)))))))

(compile parse=comrant
(s1 (3£ Cand (maual currentewxoro °‘count)
’ (carseesorg trisencse “()))
> §2
atter .
(setr °cayvrang ‘count))
' (1f (an1 (2cual cyrrent-:cre “f{aencify)
(parse=wora this=ncze ()

+
PSPV ¥
BT § T

1 -d 32

agter

; (setr ‘commanc ‘enumerate)))

i (52 (1£f (anga (rarseenoun=arouy tais-noae nil)
) {null remalningesoris))

4 » > ain

§ agter

: (setr “noune3roup lustepdrsea))))

i (compile parse=noun=croupx
(st (1f (rarse=»2ra tnis=noue “ceterminer)
' . => s2&
i atter
' (setr ’numcer (select “(singular plural)
! (gett laste=parsecl))
(setr ‘deter~iner (select “(cefirjte irgefinite)
(cett last~parsed))))

(1 t => sca))
' (828 (it (carsee-sora tnis~rcae “nymecer)
’ => §2
after
(cona ((ezusl “sipcul2r (cetr ‘nuincer))
(Frint °zZilte=caterriner=nucber)))
(setr ‘nurcer (et last-parsec ‘numver));
(it ¢t => s2))
(82 (1f (2nn rerqginirGeanrnas
. ) (sealect ‘(acjective=-noun)
{oetf (C3Iul reTeinina=:0ras)))
(oarse=«Grz tnis=unae ‘acjective))

;
‘o
]
3
1
3
X

» o

> 82
atter

.

a8

1w -
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4
(ader ‘acjectives last-rarsea))
(1¢ (parse=word tnis=ncde °noun) )
i => win .
atter , ¢
(econd ((equal K
{length (intersectilon ‘(sinaulsr clural) ;
(cons (getr “nurcer) “
(gett last=garsed)))) !
2) :
(erint “tilteceterniners=rnun)) .
((and (nunoers (aetr °‘numcer)) -
(rencer “sincular (cctf lasteparsea))) !
(print ‘tiit~nywcegr=rour))) 3
: (cond ((not (numoers (vetr “nurner))) N
(setr ‘numoer (select °(singuler glural) S
(gett lasteparsec))))) o
(setr ‘noun lasteparsea)))) K
5
o
| ;
(compile parse-word l
| (81 (if t => 4in .

atger
(setc this~node current=+ora)
(sety revalnipu=x0oras (¢l fersinringe=eords))
(cono (reraining=eorcs (setqg currente.ord
(car reraininageworas)})

{t (setc current=acrd nilj)))))’

! , (defun setr (reoister vilue)
(putproy this~-noce valie register)

value)

(defun getr (reaister)
(get this=node register))

(detuyn select (x y)

’ (eona ((null x: ~1l) .
((remoer (Cér x) y) (Cer x))
(t (seject (zar xj ¥))))

. —.
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(detun genname (name)
tprog (n)

o (coad ((sety n (get name °hamecounter)))
’ (t (setz n 1))

L (Putproo nawe (acdl n) “namecgunter)

- (return (implcae (append (exploce name)

(exploae n))))))

S - ¥ TSRS RPAITITINY Y VSRR

)

(detun largep (object) (equal (car(fcet oolect “size °vaiue)) ‘large))

.

> § e

- (defun redp (opject) (enual (get orject “color) ‘red))

3 (defun longp (object) (ureaterp(or(Jet ovject “lengtn) 0,) 5,0))

Kaoinsamssitid ol £,

(detun getf (x) (car (f5et x “reatures ‘value)}))

(detun testt (node features)
(cond ((null reatures))
({ator teatures)
(seta features (lisc festures))))
(equaj (length tedtures)
{len3tn (intersectlon features (uett noae)))))

(defun attach (¢ o)
’ (putprod ¢ » “varent)
(putproe p
(apcero (jet p “cnilarer) (list cJ)
‘cnilarer)) -

g g,

Lt aniras T

PR RPN .

. et st
et e et et g e e ¢+
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(defun intersection (x Yy)
’ (cond ((null x) atl)
((memter (Car x) y)
(éons (car x) (irtersecticr (cdr x) yI))
(t (intersection (¢ar X} y))))

(defun addr (reuister value)
(setr recister (cons value (getr register})))

(putprop ‘a3 °(determniner sincular inaefinite) ‘teacures)
(putprop ‘the ‘“(cet=r:iser aefinite) “zeatures)

{putprop °"long ‘lona: ‘agjective=funcrion)

(putprop “red “(do0jective) ‘“teatires)

(putprop “large “(anjective) “featyres)

(putprop °“screwariver ‘(noun sinGguiar)
(putprop “screwarivers “(noun flural)
(outprop “long ‘(s3tective) ‘teatures)
(putprop ‘screwariver “(nour sinuular) “teatures)

(putprop “screscdriver “{Sl s2 s s4 §>) ‘iostance)
(putprop “screwarivers ‘screxariver °sinculer~forr)
{Latprop “tool “(nsrTrer screwariver sas srencr) ‘instance)
(putprop “namrer “nl ‘instance)

(putprop °sa« “sawl “instance)

(putprop “wrencn ‘(.1 »2) “instance)

(putprop “large ‘lar,ec “acdjective=tunction)

(putprop “red ‘recp ‘auvjyective-function)

(putprop “si ‘“larce ‘size)

(putprop °s1 “‘blue “color)

(putprop “s1 °7 ®ienctnm)

(outprop °$2 ‘larse “size)

(Putprop °s2 ‘rea “coicr)

(Pputprop “S3 “larae *size)

(putprop “s3 ‘rea ‘culcr)

(putprop “s4 “smail °size)

‘feagures)
sfeatyres)
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(putprop ’s5 “small °’size)

(putprop ‘nl ’“metal °“~aterial)

(putprop “sawl ‘metal °:aterial)

(putprop ‘=1 ‘metal °‘raterial)

(putprop ‘metal ‘retsalc “acjectlive=function)
(putprop ‘metal “(ai1r1ective) “testures)
(putprop “tool “(nsun stinsular) ‘features)
(putprop “tools “tool “singular=tor-:)
(putprop “tools “(nouvr nlural) °teatures) -
(putprop “sas °"metal “~aterial)

(putproc “hammer ‘metal “rateridi)

(putprop “wrench "weotal ‘saterial)

(putprop °‘screwdriver “-~etal “‘naterlal)

N . . L LI
S e e bt S Sh A AT ¢ Sare o o

(detun metalp (orject) (equal (get cdject “materlaj) ‘metal))

(putprop “name "¢ “nanecounter)

P . .
e e e 4 . —— e e

(compile parse=-noun=uroup
(sl (1f (parse=wsdrc tnis-noge ‘aeterminer)
> 82
after
(setr “nurver (Select ‘(singulAar olural)
) . (geti last=carsed)))
(setr ‘aeterainer (select “(cefinite irauefinite)

——— -

1 (getf last-rersed)))])
(s2 (1f (rarse=word tpisenode ‘aajective)
=> 52
atter

(addr ‘adjectives last~rairsea))
(1f (parse=word thisencde “noun)
> vin
atter
(setr ‘nuni.er (select ‘(sinculér pluyral)
(gett lasteparsea)))
(setr ‘noun lasteparsec)l:))

(complle parse=clause
(sl (if (parse=ngun=arcup this=noae nii)
H -y sz
| © atter
(setr °sucject laste=carseal);)
(82 (if (parse=+dri tnis=nozn °(vero tenseay})
=> $3
arter (setr ‘verc lastersrsaz)l})
(83 (1£f (anc (2cuél lesteiarsen ‘te;
(parse=worc tnis=ncae ‘pestiyarciciple))
=-> $3
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atter
(setr ‘“cn)ect (oetr “supject))
(setr ‘supject nil)
(setr “vers lastwparsea))
(if (3na (testt (cetr °verc) ‘transitive)
(parse=nour=croup thisenoce nil))
=> s4
atter (setr “oriect lasterarsea))
(12 (or (testt (cetr “verc) ‘lntransitive)
(geir ‘otject’) b
*> $4))
(54 (1f (ana (3etr ‘suciect)
(null reraintnrg=words))
=> win)
(1t (and (not (oetr “sunject))
(ecual currentevcra ‘nv)
(carse=worce this-noge nil))
{if (not (3etr “supiect))
> 83
agter
(setr ‘suplect “sovecne}))
(s5 (1t (parse=noun=groug this=noae nil) _ :
° > 54 k
atter
(setr °"suoject last=parsed})))

AL RS S . & % B M ASAGScE. .

(defun pnillipsF (ocject) (ecual (oet ocjact ‘tyce) ‘taillips)) ‘
(putprop “pnillics “(aojective) “features)

(putprop ‘phillifs “uniliigsr “aclective=zuynction)

(putprop °st “entllics “tyve)

(putprop “s4 ‘Philiics ‘tyre)

e i L e —— Ak ed <A A Al e
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APPENDIX C

USER'S GUIDE

The English-command programs and the frame system's programs
are implemented in Franzlisp for the PDP-11/70 under UNIX. UNIX

terminals at the Naval Postgraduate School are located in Roam 502,

An account number may be acquired through the Camputer Science
Office fram Al Wong or Bruce Montague.

Once the programs in Appendices A and B have been acquired
feither by entering them yourself, or fram another account), using
them is straightforward. After logging on:

(1) Enter the LISP interpreter by entering percent (%) LISP,
(2) Load the LISP programs to the interpreter,

(3) Execute the program "builder" to construct the frames by
entering (builder), and

(4) You are now prepared to ask questions of the system (£ the
format presented in Chapter V of this study.

These programs are easily improved by entering new dicticnary
words to the program builder, and by changing cammands in the pro-
gram Parse-camand.
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